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1. Introduction. The application of lasers to generate acoustic pulses under natural conditions [1-3] has made it 
possible to reveal a number of differences in the shape of the received acoustic signals in comparison with the signals recorded 

under laboratory conditions for fresh water [4-6]. The principal distinction between conditions of natural and laboratory 

experiments is the presence of a concentration of gas bubbles in the surface layer of the ocean. Resonance scattering by bubbles 
leads to substantial dispersion of acoustic waves. In the present study we provide a theoretical description of dispersion 
deformation of optoacoustic pulses due to the presence of gas bubbles. It must also be noted that the occurrence of dispersion 

effects is rendered favorable by the fact that laser sources make it possible to obtain pulses of very short duration. Components 
with substantially different evolution laws appear in the very wide spectrum of this signal, which, in turn, leads to the 

appearance of distortions. 
In constructing the theory of this effect we consider a situation similar to the experimental conditions [1, 3], when the 

source is a CO2-1aser beam of radius a - 10 -2 m, wave length X 0 = 10 -5 m, and pulse duration z L - 10 -5 sec. Keeping 
in mind the oceanographic applications, particularly the realization of the distant sounding method, we analyze in detail the 

generation mechanism, implemented with explosive boiling and guaranteeing substantially more effective transformation of 

electromagnetic into acoustic energy than by thermoelastic or evaporating mechanisms. It must be noted that the theory of 

excitation of optoacoustic signals in a homogeneous two-phase medium was developed earlier [7] for the thermoelastic 

generation mechanism. 
Taking into account the gas bubbles distributed in the liquid leads to substantial dispersion of acoustic waves: 
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Here k is the wave number, oJ is the frequency, c~ is the speed of sound in a pure liquid, X(W) is the susceptibility ( ] X(~) [ 

< <  1), g(R 0, z) is the bubble distribution function in size, R 0 is the bubble radius, ~o0(Ro) is the eigenfrequency, and ~o is 

the attenuation constant. The bubble distribution in the surface layer is extremely inhomogeneous over depth. According to 

contemporary concepts [8-10], g(R 0, z) = g(R 0) exp(-  I zl/d) (d - 2 m), and therefore the results of [7] cannot be applied 

directly. 
At the same time the geometric sizes of optoacoustic pulses under the conditions considered consist of several 

centimeters, making it possible to use the "geometric acoustics" approximation to describe their evolution. In this case one 

obtains the following expression for the radiation field at the illuminated spot 

f ['d.x (,~, 0) 
P (z, t) = - l  

where d. = d(1 - exp(-  I zl/d)). For the surface layer Ps(P, t), modeling the recoil of fluid vapor boiling under the action 
of laser radiation, we adopt the traditional assumption of factorization of spatial and temporal dependences: Ps(P, t) = Ps(o)" 
~(t) ,  where a 2 = a ' -  1 ~ dP~s(O), ~(o~) is the Fourier component of the temporal envelope. 

2. The Model, The shape of the susceptibility X(o~, z) depends the bubble size distribution (1.1). Figure 1 shows a 
number of bubble size distributions, obtained on the basis of both acoustic [9, 11] (curves 1, 2) and optical [12-14] (curves 3-5) 
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measurements o f  comparable recording conditions of wind velocity W (of surface agitation) and depth. Attempts of 

approximating these distributions by simple analytic expressions, in which the dependence on external conditions is reflected 

only by characteristic scales and special points, were undertaken in [8, 15, 16]. It must be noted, however, that these models 

are based exclusively on the data of [12]. An obvious confirmation of the self-consistency of distributions is the calculation on 

their basis of the dispersions in sound velocity and attenuation, which are directly measurable in acoustic experiments. Figure 

2 illustrates these calculations on the example of the frequency dependence of the attenuation coefficient�9 The solid curve is 

the calculation [15]. The values were recalculated for the ocean surface and for a wind velocity W = 12 m/sec. 

Based on the results of [8, 15 16], it is suggested to use a relatively simple analytic expression, in which the 

dependence on external conditions is depicted by a small number of parameters for approximating not the distribution function 

itself, but the susceptibility x(o~, 0): 

r J ,  
7.(oJ, 0 ) =  2 j _  (2.1) 

~a, - 2 i b , ~  

The choice of the given approximate expression is determined by the fact that it has the same functional dependence for the 

low- and high-frequency asymptotes as the exact integral representation (1.1). Besides, Eq. (2.1) leads to the same characteristic 

type of bell-shaped curve as a function of a = Im k = (60/2c~) Im X (02, 0) as Eq. (1.1). The values of the adjustable 

parameters 02., 6., and F were found from the following conditions: 02. corresponds to max o~(02), while F and 5. are 
determined from the relations 

F = -2Ac (O)/c~, 

(Ac (0) = - (c~/2) Re 7. (0, 0), 

Fc~2,/(4b,c~) = c~ (~:,) 

F = 4~c~ ~f dRoRog (Ro) ~o 2 (Ro)). 
o 

To estimate these quantities we used the data of [8, 9, 15, 16]. Based on the model of bubble size distribution, the 

function c~ = ~(~) was calculated in [15], in which case the value of max ~, reduced to the surface of the ocean, was c~(w,, 

0) = 2.4 m -  i Unfortunately, that study does not contain a correction to the speed of sound. A similar calculation is contained 

in [16] for the frequency interval 0 to 40 kHz (these data are denoted by + in Fig. 2), but the value Ac(0) = - 2 7  m/sec, 

corresponding to a wind velocity W = 11-13 m/sec, creates doubts about too high a value of this quantity. The reason for the 

doubt is the comparison with the data of [17], where for the bubble concentration, substantially exceeding the conditions of 

[12], the Ac(0) value did not exceed 19 m/sec (at the frequency 5 kHz). Recalculation at comparable concentrations leads to 

zXc(0) = - 17 m/sec. Direct calculations of F for the model bubble distribution of [8] also provide the same order of magnitude. 

Using these estimates, we obtained the following adjustable parameter values: w./27r = 50 kHz, 5, = 0.5a~,, F = 2.3"10 -2. 

Figure 2 illustrates the behavior of the function ~ = t~(co) in the model (2.1) by the dashed line. It is noted that, judging from 

recent data (see Fig. 1), the methodology of [12] reduces the bubble concentration in the small size region, so that the 

maximum of the distribution g(Ro) settles down more quickly in the region R 0 = 2.10 -5 m, which, in turn, must lead to a 

shift in max c~(w) toward the high-frequency region. Nonetheless, due to the absence of both analytic models, and calculations 

on their basis of damping and corrections to the speed of sound, in what follows we are concerned with the estimates given 
above. 
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The next step consists of specifying the temporal envelope of the source. Unlike the thermoelastic mechanism, in the 

regime of explosive boiling there is no longer a unique correspondence between the shape of the laser pulse and the temporal 

envelope of the source. In this case the set of models [5, 6, 18-22], used for the characteristics of a CO2-1aser pulse, cannot 

be applied directly. We intend to discuss three characteristic features in the shape of the envelope and, consequently, the 

radiated acoustic pulse: the generation law, the characteristic duration, and the decay law. 

The Gaussian model ~(1)  = Poexp (--t2/~'L 2) is unsuitable for our purposes. The infinite extent of the front does not 

make it possible to manifest the spatial distinction of the spectral components propagating with different velocities, which is 

essentially also one of the effects to be discussed - a distinct signature [23]. 

The formal representation of a pulse of finite extent in the form of a Fourier series and the structure analysis of separate 

component contributions are the traditional path [24], and lead to a completely determined front structure: in the absence of 

dispersion the leading and rear fronts of the separate harmonics have the form of a step. Any other generation law necessarily 

requires a complicated scheme and the inclusion of several harmonics. 

It is particularly important to dwell on the description of the lead front since, as follows from [3], complicated physical 

effects, related to possible secondary generation of an acoustic pulse in the region of explosive boiling, can influence the pattern 

of transient processes. So as not to get involved with this deficiency in the present study, we assume an exponential decay law. 

Thus, to describe the time dependence of the source it is suggested to use one of three models (~(t) = P0 exp(- t / rL)  

(t/r L) [5], ~ ( t )  = 2.5P0(t/zL) 2 exp(--t2/~-L 2) [6], ~ ( t )  = P0(3th'L) 3 exp(-3th-  L) [21, 22]), having different generation laws 

(step, linear, and quadratic) and characterized by a single parameter - the duration. In this case the Fourier transform ~(~0) 

appearing in the integral (1.2) is described by the expression ~(oJ) = in! (in/7"L)n/(o~ -I- in/~-L)n+l, n = 1, 2, 3, where the 

model of [6], having a complicated analytic behavior, is replaced by the simpler approximation~q~(t) = P0(2t/~'L) 2 exp(--2t/~-L), 

leading to the same linear generation law, but at the same time possessing a simple analytic structure for n = 2. 

3. The Signature. We turn now directly to determining the evolution of the optoacoustic pulse. In this case it is 

convenient to measure time from the moment of pulse generation t' = t - I z [ /coo and transform to the dimensionless 

variables ~ = ~/oJ., z = t' (2coo/Fd,), v = ~5./~.. It is also meaningful to distinguish a parameter characterizing the dispersion 

deformation, X = Fd.o~./2coo. In this case the expression for the pressure in the far-field zone on the optical radiation axis (1.2) 

acquires the form 
+oa 

. n  t n - I  

P (z,  "t) = 2zc| a2P~ I, I = t nn.,n,~2..__..._~_ J d~ exp (kr  (~, x)) 
_~ (~ + i'n,) "§ ' (3.1) 

qb (~, ~r) = it  [(1 - ~2 _ 2iv~)-I _ x I. 

Starting with the fundamental studies of Sommerfeld and Brillouin, expressions of similar type were used to analyze the 

distortion of wave packets traversing through resonance media. An approximate analytic calculation of the integral (3.1) is 

possible at short times (r < < 1) and for substantial dispersion (k > > 1), when the steepest descent method can be used [23, 
24]. Since both approximations use deformation contour integration, it is necessary to present the structure and location of the 

critical points of the integrand expression. 
Due to the causality principle all singular points of the integrand expression are located in the lower half-plane ~. They 

include the pole of,~(~) at the point ~ = - imn  = --in/(~ (depending on the model, this pole can be of order 2, 3, or 
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4) and the two susceptibility poles ~N = - i v  _ x/1 - v 2. Here it must be noted that the expression k = (m/coo) (1 + X ( w ) )  ~/2, 

appears in the original integral, therefore the use of the approximation (1 + X) 1/2 = 1 + X/2 is possible not too closely to 

the poles and to the branching points of this expression. By the same reason the ~ plane contains, along with the singularities 

mentioned, branching points (1 + X(W,  0) = 0), combining the branching points with the poles of X(W, 0) [24]. 

Within the short time approximation (r < < 1) one can describe the evolution of the leading front of the pulse, 

determined by the contribution of the high-frequency components, propagating with the highest velocities. For this purpose we 

deform the integration contour in the vicinity of the large radius ~ - 1/v~, I ~ I < < 1, ~ < < m n, and the integral (3.1) 

acquires the form 

[( ')] 
P (z, "t) = a2e~ n! (im,~)'~ a~ exp - iX ~ + x~ = 

2zc~ 2~ ~o (3.2) 

~?eo~, I " r  (2X v'-i'). - 2.'c.,. n . m ; t  s n - t  

The appearance of an oscillating structure reflects the formation process of the signature, surpassing the basic portion of the 

pulse. It is noted that one can talk convincingly about a distinct signature only when one oscillation period of the Bessel 

function occurs at a time t' < <  r L. The first zeros of Jo, J1, and J2 occur at 2X~q-= 2.4, 3.8, 5.1. Using for these estimates 

the values d = 2 m, F = 2.3.10 -2,  coo = 1.5"103 m/sec, o~./2r = 50 kHz, one obtains t 0' = 0.9; 2.3; 4.2/zsec. 

To calculate (3.1) when X > >  1 one can use the steepest descent method. In this case the problem reduces to 

determining the time-varying positions of saddle points and poles of the integrand expression (3.1). These quite unwieldy 

calculations clarify, however, the physical meaning of the changes in the pulse shape (the extraction of the high-frequency 

signature, propagating in a pure liquid with the speed of sound, as well as the formation of an energy-carrying pulse, moving 

with the group velocity), but will be omitted. The point is that under the experimental conditions [1, 3] the estimates of bubble 

concentration, and the estimates on their basis of the quantity X, give X - 1, rendering the asymptotic estimates unconvincing. 

4. Results. The most complex model is the envelope model, corresponding to the value n = 1: the slow decay law 

of the integrand expression for ~ --> oo worsens the convergence substantially. In this connection one must take into account 
the following circumstance, affecting the evolution of the high-frequency components. 

The decay of the bubble distribution function in the small size region (R o < <  2.10 -5 m) leads to a reduced 

susceptibility Im X ( w )  and, starting with some frequency, it is necessary to take into account the dissipative processes of 

viscosity and thermal conductivity, which can be accounted for by further contributions to the dispersion law of acoustic waves 
[25]: 

k = -~ ll + F J , / 2  (to 2 - co2, - 2 i ~ . w )  + i a ' J ] ,  
C~ 

1 
a' = ,--"T [(4/3~1 + ~,) + • (1/Cv - 1 / C v ) ] .  

213 c| 

(4.1) 

The second term in expression (4.1) describes the bubble contribution (5, = 1/2w.), p' is the fluid density, ~ and ~- are the 

dynamic and bulk viscosity coefficients, • is the heat conduction coefficient, C V and Cp are the heat capacities, and for water 
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a,  = a'  (27r) 2 = 0.024 (#sec)2/m. Therefore, these processes affect the damping of each Fourier harmonic over the whole ray 

propagation path, and an additional z-dependent factor appears in expression (3.2): 

. n  I . -1  ~ .  
1 = ~ nn.rn,, J d~ ~ exp ( i r  (~. ~)) e x p  ( -a ' z~: .~z) .  

2a (~ + im,,)" ~'l 

Figure 3 shows calculation results, presenting signature formation with account of dissipative processes. The curves 2-4 

correspond to the dissipative parameter values X = 1, 2, and 3, while curve 1 describes the shape of the acoustic pulse in the 

absence of dispersion (X = 0) and damping. The recording depth was taken equal to 8 m, and the constant characterizing pulse 

duration is z L = 5"10 -6  sec (m 1 = 0.54). The choice of the X value was based on the tendency of obtaining a description 

within the same parameter region in which the asymptotic expansion method ceases to work (X > >  1). 

Now to describe the shape of the optoacoustic pulse for the models n = 2, 3 on the surface of force. In Figs. 4 and 

5, the calculated results are presented for n = 2, m 2 = 1.08 and n = 3, m 3 = 1.62, respectively: r L = 5-10 -6  sec. Curve 

1 corresponds with k = 0 in neglecting dissipation, while curves 2-4 correspond to k = 1, 3, and 5 if the dissipative process 

is taken into account. For convenience we compared a different model of the given dependence, normalized on the maximum 

pulse values at k = 0. 

Comparison of the calculation results in these three models shows that, as can be expected, the differences are primarily 

generated in the signature characteristics - its shape, amplitude, and duration. The flatter the leading front of the pulse (n = 

1-3), the less are high-frequency components contained in its spectrum and correspondingly less is the amplitude of its 

signature. The signature formation process itself is also quite distinctive. Thus, in the model n = 1 substantial deformations 

occur during the compression of the acoustic pulse, and in the models n = 2, 3 - during the expansion phase. 

To compare the calculation results with data of natural experiments we show in Fig. 6a the shape of observed [1, 3] 

optoacoustic pulses, and in Fig. 6b - fragments of the leading front structure. It is noted that it is precisely this portion of low 

amplitude compression, surpassing the basic portion of the pulse, and invariably present in the various series of measurements 

[1, 3], which initiated the appearance of theoretical studies. In the comparison one must select the most useful of the three 

envelope models of the surface force, as well as establish the characteristic values of the dispersion parameter X and the 

duration of the surface force T L. 
As follows from the calculations, the X values must not exceed 3, since otherwise the dispersion spread of the pulse 

is too large. On the other hand, X cannot be less than 1, since in the opposite case the signature cannot be formed. 

The choice of the T L value is based on the fact that in the explosive boiling regime, and for optical pulse durations of 

10 -5  sec, the active time of effective surface force must be somewhat longer than this value, since following the cessation of 

action of laser radiation the heated spot continues exciting the sound field in the evaporation regime. Since T L determines the 

order of magnitude of the halfwidth of the surface force envelope, the calculations were carried out for r L = 5.10-6 sec. 

Finally, the selection of the surface force envelope is primarily determined by how any of these models reproduces 

the shape of the signature. Unfortunately, the low sensitivity of the adopted hydrophone GIR-1 in the high-frequency region 

reduces substantially the amplitude of the signature (Fig. 6b), thus rendering a unique selection quite difficult. The calculation 

with the model n = 3 leads to the smallest signature amplitude. To try to explain the divergence between the theoretical 

calculations and the measurement results, an attempt was undertaken in the present study of taking into account the 

deformations resulting from the hydrophone adopted by constructing model characteristics of the sensitivity on the basis of 

available amplitude-frequency characteristics. Unfortunately, the use of relatively simple models did not make it possible to 

formulate sufficiently adequate characteristics, therefore we do not provide the corresponding results. 
It must be noted that the effect of singling out a signature in two-phase liquids was observed earlier [26, 27] for a 

monodisperse size distribution of bubbles in substantially different excitation regimes. 

800 



REFERENCES 

. 

2. 

3. 

4. 

5. 

, 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 
19. 

20. 

21. 

22. 
23. 
24. 

25. 
26. 
27. 

O. A. Bukin, V. I. II'ichev, and V. D. Kiselev, "Study of acoustic signals generated by a CO-z-laser in sea water," 

Dokl. Akad. Nauk SSSR, 315, No. 1 (1990). 
S. V. Egerev, L. M. Lyamshev, and K. A. Naugol'nykh, "Optoacoustic source in an oceanographic experiment," 
Akust. Zh., 36, No. 5 (1990). 
O. A. Bukin, V. I. II'ichev, and V. D. Kiselev, "Observation of secondary generation of sound in a liquid with bulk 
boiling due to laser activity," Pis'ma Zh. Eksp. Teor. Fiz., 52, No. 12 (1990). 
L. M. Lyamshev, and K. A. Naugol'nykh, "Optical generation of sound -- nonlinear effects," Akust. Zh., 27, No. 
5 (1981). 
V. F. Vitshas, V. V. Grigor'ev, V. N. Korneev, et al., "Generation of sound in the evaporation regime by the 
interaction of radiation with water," Akust. Zh., 31, No. 3 (19985). 
B. S. Maccabee, "Laser induced underwater sound," IEEE Ultrasound Symp., Colorado (1987). 
S. V. Egerev, K. A. Naugol'nykh, A. V. Pashin, and V. N. Uchastnov, "Thermooptical emitter of sound in a two- 

phase medium," Akust. Zh., 30, No. 3 (1984). 
G. B. Crawford and D. M. Farmer, "On the spatial distribution of ocean bubbles," J. Geophys. Res. C, 92, No. C8 
(1987). 
S. Vagle and D. M. Farmer, "The measurement of bubble size distribution by acoustical backscattering," Rept. Inst. 
Ocean Sci., Sydney (1991). 
E. A. Powell, "Survey of scattering, attenuation and size spectra studies of bubble layers and plumes beneath the 
air-sea interface," Naval Res. Lab. Rept. 6823, Washington (1991). 
H. Medwin and N. Breitz, "Ambient and transient bubble spectral densities in quiescent seas and under spilling 

breaks," J. Geophys. Res. C, 94, No. C9 (1989). 
B. D. Johnson and R. C. Cook, "Bubble population and spectra in coastal waters -- a photographic approach," J. 
Geophysical Res., No. C7 (1979). 
S. C. Ling and H. P. Pao, "Study of microbubbles in the North Sea," in: B. R. Kerman (ed.), Sea Surface Sound, 
Dodrecht: Klumer (1988). 
Y. Su, S. C. Ling, and J. Cartwill, "Optical microbubble measurements in the North Sea," in: B. R. Kerman (ed.), 
Sea Surface Sound, Dodrecht: Klumer (1988). 
E. A. Skelton and W. J. Fitzgerarlk, "An invariant imbedding approach to the scattering of sound from a two-phase 
fluid," J. Acoust. Soc. Amer., 84, No. 2 (1988). 
M. L. Hall, "A comprehensive model of wind-generated bubbles in the ocean and predictions of the effects of sound 
propagation at frequencies up to 40 kHz," J. Acoust. Soc. Amer., 86, No. 3 (1989). 

D. M. Farmer and S. Vagle, "Waveguide propagation of ambient sound in the ocean surface bubble layer," L Acoust. 
Soc. Amer., 86, No. 5 (1989). 
L. M. Lyamshev, "Optoacoustic sources of sound," Usp. Fiz. Nauk, 135, No. 4 (1981). 
V. N. Korneev and Yu. I. Sentsov, "Modeling of the evaporation regime of the action of radiation on a fluid with a 
distributed surface layer," Akust. Zh., 33, No. 4 (1987). 

T. A. Dudina, S. V. Egerev, L. M. Lyamshev, and K. A. Naugol'nykh, "Nonlinear theory of the thermal mechanism 
of sound generation by laser radiation," Akust. Zh., 25, No. 4 (1979). 
A. I. Bozhko, F. V. Bunkin, A1. A. Kolomenskii, et al., "Laser excitation of intense sound," Tr. Fiz. Inst. Akad. 
Nauk -- Studies in Hydrodynamics, 156 (1984). 

M. W. Sigrist, "Laser generation of acoustic waves in liquids and gases," J. Appl. Phys., 60, No. 7 (1986). 
L. A. Vainshtein, "Pulse propagation," Usp. Fiz. Nauk, 118, No. 2 (1976). 

M. Elyses and F. Garcia-Moliner, "Propagation of wave packets," in: W. P. Mason (ed.), Physical Acoustics -- 
Principles and Methods, Academic Press (1968), Vol. 5. 

L. D. Landau and E. M. Lifshitz, Fluid Mechanics, 2nd rev. ed., Pergamon Press (1989). 
V. K. Kedrinskii, "Disturbance propagation in a fluid containing gas bubbles," Prikl. Mekh. Tekh. Fiz., No. 5 (1968). 
V. E. Nakoryakov, B. G. Pokusaev, and I. R. Shreiber, Wave Propagation in Gas- and Vapor-Fluid Media [in 
Russian], IT SO AN SSSR, Novosibirsk (1983). 

801 


